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Résumé                                                                                                                     

Dans le contexte du changement climatique, les événements extrêmes deviennent de plus en plus 

fréquents et intenses. Malheureusement, la fréquence et l’intensité des événements hydrométéorologiques 

auront tendance à augmenter dans les prochaines décennies Ces événements ont mis en exergue la 

vulnérabilité du territoire Haïtien. Par ailleurs, les Modèles Climatiques Globaux (MCGs) sont les outils 

les plus sophistiqués disponibles pour étudier l’impact du changement climatique. 

Cependant, très peu de données hydrométéorologiques sont disponibles en Haïti, et la plupart des données 

numérisées existantes sont disponibles sur une période historique (1920-1940). L’objectif de cette étude 

est d’évaluer neuf (9) modèles climatiques globaux de la 6
ème 

phase du Projet de Comparaison des 

Modèles Couplés, dont l’acronyme anglais est CMIP6 (Coupled Model Intercomparison Project 6th) du 

GIEC (Groupe d’Experts Intergouvernemental sur l’évolution du Climat) sur Haïti, sur une période de 

temps qui s’étend de 1920 à 1940. Dans cette étude, l’ensemble des données de précipitations observées 

au sol est utilisé pour évaluer les Modèles Climatiques Globaux  (MCGs) du CMIP6. 

Une première évaluation consiste à comparer le cycle annuel des précipitations observées et celui des 

MCGs. La majorité des CMIP6 reproduit le cycle annuel de la distribution bimodale des précipitations 

mensuelles par rapport aux données observées au sol, avec un léger décalage en juin. Et, les MCGs sous-

estiment les valeurs de précipitations moyennes mensuelles. Cependant, les données de précipitations 

issues des modèles sont plus importantes en novembre (comprises entre 80 mm et 300 mm) qu'en mai 

(entre 40 mm et 125 mm). 

Trois indices de précipitations parmi ceux qui ont été développés par l’équipe d’experts sur la détection et 

les indices du changement climatique (ETCCDI) ont été utilisés. Les indices de précipitations 

comprennent le nombre de jours de pluie (RR1), l’intensité de précipitation (SDII) et la pluie journalière 

maximale pendant un mois spécifique (RX1day). Six métriques statistiques (Biais, R
2
, RMSE, POD, 

FAR, FBI et CSI) ont été calculées sur ces indices. Le POD, FAR, FBI et CSI ont été calculés à partir des 

fausses alertes, des jours de pluie ratés, et des jours de pluie réellement estimés. Les résultats révèlent que 

les MCGs ne présentent pas de bonne performance dans la représentation du nombre de jours de pluie 

(RR1), à l’échelle annuelle et annuelle saisonnière. Ces mêmes résultats ont été observés pour l’indice 

d’intensité quotidien simple (SDII) et la précipitation journalière maximale pendant un mois (Rx1day). 

De plus, le nombre de jour de pluie estimés par les MCGs sont plus important en SON (septembre-

octobre-novembre), et JJA (juin-juillet--août), avec des biais qui varient de 13 à 42 jours et -3 jours à 32 

jours, respectivement. 
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Des valeurs d’erreurs quadratiques moyennes similaires (14 jours à 37 jours) jour sont été trouvées en 

SON, et des coefficients de corrélation (R
2
) très faible entre les données observées et de modèles.  

La capacité des MCGs à détecter les jours humides et secs dépend de la saison. Ainsi, 5 des 9 modèles ont 

pu détecter correctement les jours de précipitation ou événements de pluie de manière plus ou moins 

satisfaisante pendant la saison cyclonique (SON), avec des valeurs de POD allant de 0.5 à 0.76. À 

l'exception de CESM2-WACCM, les jours de pluie estimés par les MCGs ont surestimé ceux des données 

observées au sol pendant la saison sèche, avec des valeurs de FBI variant de 1.11 à 5.11. 

Alors que, dans les saisons MAM (mars-avril-mai) et JJA, 44% des modèles ont sous-estimé les jours de 

pluie dans chacune d’elles. Par ailleurs, pendant la saison cyclonique, tous les MCGs ont surestimé  les 

jours de pluie par rapport aux observations au sol. Les valeurs de FAR des modèles excédent 0.65 dans 

toutes les saisons. Il existe un faible rapport des événements de pluie des modèles et observées qui ont été 

correctement diagnostiqués, et ce, dans toutes les saisons, avec des valeurs de CSI bien inférieures à la 

valeur optimale de un (1). Les diagrammes de Taylor synthétisant l’écart-type, la RMSE et le coefficient 

de corrélation R
2
 indique que les MCGs ne présentent pas de meilleures performances.  

 

Mots clés: Modèle climatique, CMIP6, GIEC, Haïti, Précipitations 
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Notation  Signification 

MCG  Modèles Climatiques Globaux 

GIEC  Groupe d’Experts Intergouvernemental sur l’évolution du Climat 

CMIP6 Coupled Model Intercomparison Project 

ETCCDI Expert Team on Climate Change Detection and Indices  

OMM Oganisation Mondiale Météorologique 

MEF Ministère de l’Economie et des Finances 

DJF Décembre-Janvier-Février 

MAM  Mars-Avril-Mai 

JJA Juin-Juillet-Août 

SON  Septembre-Octobre-Novembre 
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I-Introduction 

Pourquoi une évaluation des modèles climatiques globaux est-elle évidente sur Haïti ? 

Les changements induits par l’homme dans le système climatique et leurs impacts sont devenus une 

préoccupation mondiale majeure au cours des dernières décennies (Taylor et al. 2012). Ces changements, 

notamment, l'augmentation de la température moyenne mondiale d’environ 0.74
o
C (0.56

o
C à 0.92

o
C) 

depuis 19
ème

 siècle, la fréquence accrue des conditions météorologiques extrêmes et l'élévation du niveau 

des mers ont un impact disproportionné sur la surface terrestre (IPCC, M.L. Parry et al, 2007). Les 

continents ont tendance à se réchauffer plus rapidement que les océans, et les mois d’hiver se sont 

réchauffés plus rapidement que les mois d’été (IPCC, M.L. Parry et al, 2007). Des tendances similaires au 

réchauffement ont été observées dans les caraïbes. Les analyses par pays indiquent un réchauffement 

moyen d’environ 0.60
o
C depuis les années 1960, soit 0.12

o
C à 0.14

o
C par décennie (McSweeney, New et 

Liscano 2008).   

En effet, par rapport à sa position géographique, Haïti est sur la trajectoire des ouragans et donc, très 

exposé aux aléas hydrométéorologiques (Terrier et al., 2017). Dans un rapport du GIEC (2021), ce pays 

fait partie des états insulaires les plus vulnérables face aux évènements extrêmes climatiques. Le 

Ministère de l’Economie et des Finances (2016) rapporte qu’entre 1971-2014, Haïti a été touché par 137 

catastrophes naturelles, soit une fréquence de 3.1 par année et 5 pour le nombre de catastrophes par 

millier de km
2
. Les observations et les prévisions ont conclu que les impacts du changement climatique 

seront plus sévères (Borde et al., 2015). Selon l’Indice des Risques Climatiques (IRC), entre 2000 et 

2019, Haïti a été le troisième pays le plus touché par les évènements météorologiques après Porto Rico et 

le Myanmar (David ecsktein et al.,2021). Des études ont montré des changements dans les variables 

climatiques en Haïti au cours des dernières décennies, une tendance à la hausse de la température 

moyenne de 0.12
o
C par décennie sur la période 1990-2013. D’une part, les projections ont annoncé des 

hausses de températures moyennes comprises entre 2.8
o
C et 4.7°C pour la fin du XXIème siècle 

(décennie 2090-2100) sous le scénario A2, qui décrit un monde hétérogène avec une population 

croissante et une évolution technologique et économique fragmentée. Et, un réchauffement compris entre 

1.6°C et 4.2°C sous le scénario B2, qui envisage des solutions locales axées sur la durabilité, avec une 

croissance démographique et économique modérées, du cinquième rapport d’évaluation du GIEC (AR5), 

relatif à l’émission des gaz à effet de serre. (Borde et al., 2015). D’autre part, Terrier et al. (2017) 

prédisent une augmentation de la température moyenne de près de 4
o
C et une diminution des 

précipitations de plus de 50% sur l’ensemble du pays à l’horizon 2080-2099. Carlo Destouches (2019) a 

étudié l’évolution des évènements extrêmes de température et de précipitation dans les Caraïbes durant les 
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30 dernières années : cas d’Haïti pour la période de 1981-2010. Les résultats révèlent que les 

températures maximales augmentent à un rythme de 0,8°C par décennie, soit plus rapidement que les 

températures minimales, qui augmentent de 0,15°C par décennie. Concernant les extrêmes de 

précipitations, les analyses montrent que les précipitations totales annuelles augmentent en moyenne de 

12,16 mm par décennie, tandis que le pourcentage de jours de fortes pluies a progressé en moyenne de 2,9 

% par décennie. Par ailleurs, la durée des épisodes de sécheresse en pleine saison des pluies s’est allongée 

de 4 jours par décennie en Haïti sur la période 1981-2010. 

Ces changements dans le système climatique pourraient avoir des impacts importants sur l’économie du 

pays, la disponibilité des ressources en eau, la dégradation des écosystèmes marins et côtiers, 

l’augmentation des besoins énergétiques et l’accroissement des risques pour la santé humaine, pour ne 

citer que ces secteurs-là (Noncent, 2023 ; Terrier et al., 2017).  

Pour atténuer ces effets néfastes du changement climatique, il est important de disposer d’informations 

fiables sur les changements climatiques futurs. Pour anticiper, les chercheurs ont utilisés des modèles 

climatiques globaux comme outils pour étudier la réponse du système climatique aux augmentations du 

forçage radiatif (Taylor et al., 2012). Ces modèles élaborés par la communauté des modélisateurs du 

climat à travers le projet CMIP, vise à mieux comprendre les changements passés, présent et futurs 

résultant de la variabilité naturelle et forcée (Eyring et al. 2016).  

Cependant, malgré les progrès réalisés au cours des deux dernières décennies dans les simulations des 

MCGs du climat passé, présent et futur, des biais régionaux persistent en raison des résolutions 

relativement grossières et d'une représentation incomplète des processus clés à l'échelle régionale (Van 

der Wiel K. et al. 2016 ; Wehner MF et al. 2014). Toutefois, la confiance dans les projections du climat 

basée sur les MCGs dépend en partie de leur capacité à reproduire les climats passés et actuels. 

Cependant, les études axées sur l'évaluation de la performance des modèles climatiques globaux (CMIP6) 

sur les Caraïbes, particulièrement en Haïti sont relativement limitées et se sont surtout concentrées jusqu'à 

présent sur la cote nord-américaine (Almazroui et al., 2021b ; Jin C et al. 2020). 

Dans ce contexte, il est nécessaire de mener une étude permettant d’évaluer les performances des modèles 

climatiques.  

L’objectif général de ce travail est d’évaluer la performance de neuf (9) modèles climatiques globaux du 

CMIP6 en Haïti. En raison de l'insuffisance de données hydrométéorologiques récentes, ce travail 

s’appuie sur des données historiques couvrant la période de 1920 à 1940, choisie en raison de la 

disponibilité des données hydrométéorologiques mesurées, notamment, les précipitations. Cette étude vise 

à répondre à la question de recherche suivante: 
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1) En quoi l’évaluation des modèles climatiques CMIP6 du GIEC peut-elle améliorer notre 

compréhension de l’évolution du climat en Haïti ?  

2) Les modèles climatiques globaux ont-ils une bonne capacité à estimer les précipitations moyennes 

mensuelles, le nombre de jours de pluie, l’intensité pluie et la pluie journalière maximale d'Haïti 

durant la période historique 1920-1940? 

Compte tenu du manque de données récentes, l’évaluation des MCGs permettrait de mieux comprendre 

les tendances des phénomènes climatiques sur des périodes récentes. Si ces modèles parviennent à 

reproduire fidèlement les précipitations par rapport aux données observées au sol pendant cette période, 

ils pourraient être utilisés pour faire des projections climatiques. Cela faciliterait l’évaluation des impacts 

potentiels du changement climatique et aiderait à prendre des décisions stratégiques visant à minimiser 

ses conséquences néfastes sur les écosystèmes et les populations humaines. Ces projections 

contribueraient également à améliorer la planification en matière de gestion des risques et des désastres, 

ainsi qu'à renforcer les politiques d'adaptation et d'atténuation face au changement climatique. Ce travail a 

pour objectifs : 

1- Evaluer l’aptitude de ces modèles climatiques globaux à produire les caractéristiques climatologiques 

mensuelles en Haïti. 

 2- Déterminer leurs performances dans la région, en utilisant des métriques statistiques communes sur les 

indices de précipitation.  

Ainsi, Afin de rendre compte des différents aspects des problématiques soulevées dans le premier chapitre 

(Introduction) et les réponses que nous y apportons, ce travail s‘articule autour de 5 chapitres: Le 

deuxième chapitre est une revue littéraire présentant quelques travaux réalisés à partir des modèles du 

CMIP, en mettant l’accent particulièrement sur les biais dans les modèles, sans tenir compte des facteurs 

qui lui sont influencés.  

La présentation du site d’étude fait l’objet du troisième chapitre. Ce dernier met en évidence les contextes 

géographique et climatique de la zone d’analyse. Les caractéristiques physique, pluviométrique  et 

l’influence de la topographie sur les précipitations est également mis en exergue. Quelques données 

climatiques (pluie, température) sont aussi décrites. 

Le quatrième présente les principales données hydrométéorologiques utilisées (données mesurées et de 

modèles climatiques globaux du CMIP6) 
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Le cinquième chapitre présente la méthodologie utilisée pour évaluer les MCGs du CMIP6, focalisant sur 

les métriques statistiques (biais, coefficient de corrélation, erreurs quadratiques moyennes, nombre 

d’événement pluvieux et fausse alerte). 

Le sixième chapitre présente l’ensemble des résultats obtenus à partir des différentes métriques 

statistiques calculées. Ces résultats sont discutés et interprétés.   

 

II-Synthèse des travaux réalisés  

Ce chapitre synthétise quelques études sur l’évaluation des modèles climatiques globaux qui ont été 

réalisées, à l’échelle régionale et  mondiale. 

Les études portant sur l’évaluation des MCGs regroupent différents travaux. Cependant, les études axées 

sur l'évaluation de la performance des modèles climatiques (CMIP5, CMIP6) dans les Caraïbes, en 

particulier en Haïti, sont relativement limitées et se sont principalement concentrées sur la côte nord-

américaine, notamment sur l'Amérique du Nord et l'Amérique centrale (Koutroulis et al., 2016 ; 

Almazroui et al.,2021b , 2021a ;  Tong et al., 2021).  

Taylor et al. (2015, ont utilisé les données maillées de 20 modèles CMIP5 du GIEC ainsi qu’un modèle 

MCR provenant du modèle PRECIS pour évaluer la température moyenne annuelle et la précipitation 

moyenne annuelle pour les années 2020, 2030, 2050, et pour la période 2081-2100, en comparaison avec 

une période de référence (1901-2013) sur Haïti. Les résultats montrent une augmentation de la 

température annuelle, passant de 0,66 à 0,78 °C en 2020, de 0,80 à 1,11 °C en 2030, de 0,92 à 1,86 °C en 

2050, et de 0,87 à 3,32 °C pour la période 2081-2100. Une tendance à la baisse des précipitations 

annuelles est observée au cours de l’année 2020, avec une diminution moyenne de 3 à 4 %. L'année 2030 

pourrait être 6 % plus sèche, celle de 2050, 17% plus sèche, et le pays dans son ensemble pourrait 

connaître une réduction de 20 % des précipitations d'ici la fin du siècle, selon le scénario RCP8.5. 

L'étude de Koutroulis et al. (2016) a évalué la performance des modèles climatiques globaux des phases 3 

(CMIP3) et 5 (CMIP5). L’objectif de cette étude était d’évaluer la performance de 21 GCMs à l'échelle 

mondiale et régionale (29 régions), par rapport à deux jeux de données d'observation (ERA40 et ERA-

Interim) sur la période 1961-1999. Les indicateurs utilisés inclus les précipitations moyennes annuelles 

des jours humides (Ptot), les précipitations intenses (>95e percentile, P95), la température moyenne 

annuelle (Ttot), ainsi que les percentiles supérieur (P95) et inférieur (P5) de température. Les chercheurs 
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ont utilisé des fonctions de densité de probabilité (PDF) empirique pour comparer les modèles aux 

données observées et ont calculé des scores de compétence sur ces indicateurs. Les résultats ont montré 

que les MCGs du CMIP5 sont plus performants pour simuler les précipitations totales, y compris les 

événements intenses et la fréquence des jours pluvieux, avec des scores de 0,85 et 0,48 pour Ptot et P95, 

respectivement, contre 0.81 et 0.37 pour CMIP3. Concernant la température, les améliorations des 

modèles CMIP5 ont été moins marquées, sauf pour les événements chauds et froids extrêmes. 

L'étude de Almazroui Mansour et al. (2021) a analysé les performances climatiques passées et les 

projections des précipitations et de la température pour les États-Unis, l'Amérique centrale, et les 

Caraïbes, en utilisant 31 modèles climatiques globaux de CMIP6. Les objectifs étaient :1) Comparer la 

climatologie actuelle (1995-2014) des précipitations et des températures des 31 MCGs avec deux bases de 

données d'observation (GPCC et CRU). 2) Examiner les changements futurs de température et de 

précipitations dans ces régions pour trois périodes. Pour effectuer l'analyse, les chercheurs ont calculé des 

métriques statistiques (RMSE, biais et corrélation) des modèles) sur les données mensuelles de 

température et de précipitations. Les résultats ont montré que le cycle annuel des précipitations des MCGs 

correspond aux observations, particulièrement dans les îles des Caraïbes, où deux saisons distinctes ont 

été observées : une saison humide (mai à octobre), avec une courte période de sécheresse en milieu d'été 

(juillet-août) et une saison sèche prolongée (novembre à avril). Les biais annuels des précipitations 

simulées ont été variés de -37,9 % à 58,45 % par rapport aux données CRU, et de -33,23 % à 51,96 % par 

rapport à GPCC, avec des biais plus marqués pendant la saison humide. Les résultats ont également 

montré que les 14 modèles les plus performants sur l’ensemble des régions ont eu des biais moyens 

inferieurs à 0.34mm/j pour les précipitations et inferieurs à 2.08
o
C pour la température, dans la plage 

d'observations de ±1,5 écart-type (STD). Parmi ceux-ci, 9 modèles ont eu un RMSE inférieure ou égale à 

1mm/jour pour les précipitations et inférieure à 2°C pour la température, avec des coefficients de 

corrélation (PCC) de 0,60 pour les précipitations et de 0,96 pour la température. Les modèles ACCES-

CM2, AWI-CM-1-1MR, CAMS-CSM1-0, CE-Terre3, EC-Terre3-Veg, GFDL-ESM4, MPI-ESM1-2-HR, 

NorESM2-MM et UKESM1-0-LL ont été identifiés  comme les plus performants. 

L’étude de Tong et al. (2021) a évalué la performance de 29 modèles climatiques globaux du CMIP6. 

L’objectif de cette étude était d’évaluer la capacité de ces MCGs à produire les caractéristiques 

climatiques du plateau tibétain (1961-2012) par rapport aux données observées (CN05.1). Les analyses 

ont inclus des métriques statistiques (biais, RMSE et corrélation)  appliquées aux indices de températures 

et précipitations extrêmes, suivies d'une synthèse à partir du diagramme de Taylor et d’une analyse des 

tendances climatiques avec l'estimateur de pente de Sen et le test de Mann-Kendall. Les résultats ont 

révélé que les MCGs ont sous-estimé la température, avec un biais froid moyen annuel de -1,4°C, 
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atteignant des valeurs plus élevées au printemps (-2,1°C), en automne (-0,7°C) et en hiver (-2,6°C). Les 

précipitations ont été surestimées avec des biais annuels variant de 55,8% à 209,7%. Les corrélations des 

précipitations moyennes annuelles entre les modèles et les observations ont été variées de 0,5 à 0,90, et de 

0,40 à 0,87en été. Toutefois, les modèles BCC-ESM1, CNRM-ESM2-1, FGOALS-f3-L et NorESM2-

MM ont présenté des corrélations comprises entre 0,45 et 0,80. 

 

Perkins et al. 2007, ont évalué les modèles climatiques AR4 en utilisant la PDF de probabilité. Son 

objectif était d’évaluer la température maximale, minimale et les précipitations quotidiennes de 13 

modèles climatiques sur 12 régions de l’Australie, par rapport aux données observées (PCMDI), sur une 

période de 1961 à 2000. Les résultats ont montré que les modèles ont bien capturé les précipitations, avec 

des scores de compétence moyens variant de 0.60 à 0.84 pour les 12 régions. Et, la performance moyenne 

d'ensemble de tous les modèles par région a été raisonnable, avec des scores variant de 0.63 à 0.87 

(proches de 1). Les zones les moins performantes sont les régions 3 et 7 (les régions de transition 

subtropicales/tempérées) avec des scores de compétences d'ensemble 0.7.  

 

Herrera et al. 2020, ont utilisé les modèles climatiques globaux du CMIP6 comme base pour examiner les 

changements projetés de température et de précipitations ainsi que les changements hydroclimatiques du 

21ᵉ siècle sur l’île d’Hispaniola. Les résultats montrent que, bien que les modèles climatiques globaux du 

CMIP6 reproduisent le cycle annuel observé ainsi que la distribution de la température annuelle moyenne 

et des précipitations, certains modèles se distinguent par de meilleures performances. Cependant, des 

différences significatives persistent dans leurs estimations des distributions d'intensité moyenne par zone, 

ainsi que dans les schémas spatiaux de la moyenne et des extrêmes des précipitations dans ces régions. En 

outre, d’importants biais ont été détectés dans ces simulations. 

 

Dans le contexte du changement climatique, les événements extrêmes climatiques (inondations, la 

sécheresse….) ont des conséquences sur les secteurs économique, agricole et sanitaire du pays.  

Dans le cadre de notre étude, l’évaluation des MCGs sera basée sur le calcul des métriques statistiques sur 

6 indices relatifs aux précipitations, notamment : le nombre de jour de pluie, les fausses alertes, les jours 

de pluie réellement estimés, les jours de pluie ratés, l’intensité de pluie et la pluie journalière maximale 

pendant un mois spécifique.  
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III-Zone d’étude 

III.1-Contexte géographique d’Haïti 
La République d’Haïti et la République Dominicaine forment l’île d’Hispaniola qui se trouve au nord de 

la mer des Caraïbes et forme l’archipel des Grandes Antilles avec Cuba, la Jamaïque, et Porto Rico 

(Figure 1). Celui-ci couvre plus de 90% de la surface de toutes les îles de la Caraïbe. 

 Haïti (Ayiti en créole haïtien), nom d’origine amérindienne, signifierait terre des hautes montagnes ou la 

montagne dans la mer (Jean-Louis, 2012). L’île est rebaptisée Hispaniola par les espagnols, puis Saint 

Domingue par les Français. Le 1er janvier 1804, lors de la déclaration de l’indépendance du pays, Haïti 

reprend son nom d’origine amérindienne. Depuis lors, l’île d’Hispaniola est divisée en deux pays : Haïti 

qui occupe le tiers occidental de l’île et la République Dominicaine qui occupe la partie orientale.  

La superficie d’Haïti est de 27 750 km
2
, ce qui correspond à la superficie de la région Bretagne en France 

(27 208 km
2
). En raison de sa forme en fer à cheval, Haïti possède une grande longueur de littoral, soit 1 

771 km lorsque l’on y ajoute le littoral de ses petites îles satellites. Au nord, la côte haïtienne s’ouvre sur 

l’océan Atlantique. Au sud, elle borde la mer des Caraïbes. Au centre, le golfe de la Gonâve s’insère entre 

les péninsules nord et sud. Outre de nombreux îlots qui longent ce littoral, Haïti possède quatre îles 

principales, avec par ordre de superficie décroissante : l’île de la Gonâve, l’île de la Tortue, l’île de la 

Grande Cayemite et l’île-à-Vache (Figure 1).  

Haïti est l’un des pays ayant l’altitude la plus élevée dans la région des Grandes Antilles. Il a une 

topographie très accidentée (Figure 1), avec 75% de sa surface caractérisée par des altitudes supérieures à 

125 m, 25% à plus de 600m, et avec une altitude médiane autour de 280 m (Bathelemy, 2023). A l’est de 

la Péninsule du sud, le massif de la Selle possède le plus haut sommet du pays, le pic de la Selle, à 2 680 

m d’altitude (Figure 2). A l’ouest de la même péninsule, le pic Macaya, dans le massif de la Hotte, 

culmine à 2 347 m (Terrier et al., 2017). Le centre et le nord du territoire sont marqués par une succession 

de reliefs et de plaines, d’orientation générale nord-ouest-sud-est, avec du sud vers le nord : la chaîne des 

Matheux, la plaine et la basse vallée de l’Artibonite, les montagnes Noires, le plateau central, le massif du 

Nord et enfin, la plaine du Nord. Ces chaines de montagnes sont caractérisées par de fortes pentes (Figure 

1). 
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Figure 1: Contexte géographique d’Haïti (Bathelemy, 2023). Les lignes et les points rouges représentent les failles et 

les séismes majeurs (Styron et al., 2020). Les lignes bleues représentent les trajectoires des cyclones (répertoriés 

dans la base de données de la NOAA 1) ayant traversé Haïti depuis 1950. Les points violets représentent les chefs-

lieux des départements. La topographie en arrière-plan est issue des données SRTM (Reuter et al., 2007) 

 

 

 

Figure 2: Une vue du massif de la Selle (crédit photo : UNESCO). 
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III.2-Contexte climatique 
En Haïti, la pluviométrie varie en fonction de l’altitude et l’orientation des massifs montagneux par 

rapport aux alizés en provenance du nord-est. Ces vents, chargés d’humidité, frappent 

perpendiculairement les reliefs. Les plaines et les versants exposés reçoivent les précipitations les plus 

abondantes. Le cycle annuel climatique des précipitations est caractérisé par une distribution bimodale, 

avec des pics en mai et octobre, séparés par une saison moins pluvieuse en juillet, et une saison sèche en 

janvier (Moron et al., 2015). La pluviométrie moyenne annuelle varie de 509 mm à 2 434 mm (Figure 3a). 

Localement, elle peut donc présenter des contrastes importants. Les zones les plus sèches sont la 

péninsule nord, la vallée de l’Artibonite, et la plaine du Cul-de-Sac à Port-au-Prince. Les zones les plus 

humides ou arrosées sont la presqu’île du Sud et la partie du Massif du Nord située au vent, avec des 

précipitations annuelles dépassant les 2500 mm. Ce fort gradient de précipitation peut s’expliquer par la 

topographie très accidentée (Figure 3b) qui favorise les brises de mer, et de montagne superposées aux 

vents d’est dominants. En revanche, la façade occidentale de la péninsule du Nord, située sous le vent, est 

la région la plus sèche, avec moins de 1000 mm/an (500 mm/an en moyenne à Gonaïves) (Terrier et al., 

2017). Cependant, les cumuls de pluie et les périodes où les pics de précipitations ont été observés 

diffèrent selon les stations (Morron et al., 2015).  

                                        a)  

 

 

                                           b) 

 

Figure 3: Précipitations annuelles en mm (a), et orographie et emplacement des pluviomètres (b), Moron et al., 2015 

 

Du fait de sa latitude, le pays bénéficie d’un climat tropical caractérisé par l’alternance entre une saison 

humide, de mai à novembre, et une saison sèche, de décembre à avril. Dans les plaines, les températures 



 
 

 10  

 

moyennes varient entre 28°C, en hiver, et 32°C, en été. Au sommet des montagnes, la température peut 

osciller entre 18°C et 22°C (Terrier et al. 2017).  

Par ailleurs, Hersbach et al., (2020) ont montré que, tout au long de l’année, les températures maximales 

oscillent entre 25°C et 26 °C. Les températures moyennes annuelles de l'air semblent augmenter au cours 

du temps, et cette augmentation paraît s'être accélérée à partir de 2010. Et, à l’échelle saisonnière, la 

température moyenne mensuelle est d’environ 23 à 24°C en hiver et d’environ 26 à 28
o
C en été, sur la 

période 1980-2019, de l’ensemble des mailles ERA-5. Et ces valeurs sont de même ordre de grandeur 

pour Cuba, Jamaïque, Porto Rico et République Dominicaine. 

À noter que la météo en Haïti peut être plus instable dans les montagnes, avec des températures très 

fraîches. Cette instabilité peut être expliquée par l’effet orographique, où les vents humides montent et 

provoquent des précipitations soudaines, et des variations locales dues à l’altitude, aux microclimats et 

aux contrastes entre les versants exposés et abrités. Ces dernières années, le pays subit un réchauffement 

climatique. Les scénarios montrent un accroissement moyen de la température. L’augmentation de 

température annuelle moyenne à Haïti varierait de 0,8 à 1°C d’ici 2030 et de 1,5 à 1,7 °C d’ici 2060. La 

pluviosité annuelle est susceptible quant à elle de baisser de 6% à 20% d’ici 2030 (Borde et al., 2015). 

 

IV-Données hydrométéorologiques utilisées  

Les données de précipitations sont classées en deux catégories : les données de pluie "observées in situ", 

c'est-à-dire mesurées au sol à partir de pluviomètres, et les données de pluie "maillées", issues des 

modèles climatiques globaux du CMIP6 du GIEC. Les données observées sont disponibles à une échelle 

temporelle mensuelle et journalière (Bathelemy et al., 2023), tandis que les données maillées sont 

exprimées en kg/m²/s. Une description de ces deux types de données est fournie ci-dessous. 

IV.1-Données in situ                                                                                                                    
Les données de pluies journalières mesurées au sol utilisées dans cette étude proviennent de la base de 

données Simbi (Bathelemy et al., 2023). Cette base de données regroupe un large éventail de données 

hydrologiques et hydrométéorologiques. Elle contient des séries chronologiques historiques couvrant une 

période allant de 1920 à 1940. Ces données incluent des informations détaillées sur les précipitations, 

ainsi que sur d'autres variables climatiques et hydrologiques pertinentes, tels que les débits des cours 

d'eau, les températures. Les données de précipitations sont réparties comme suit : 59 stations enregistrent 

les précipitations au pas de temps journalier, et 156 stations les enregistrent au pas de temps mensuel 
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(Bathelemy et al., 2023). Pour cette étude, nous avons utilisé 15 des 59 stations de précipitations. Ces 15 

stations présentent des pourcentages de données manquantes inférieurs à 11%. L'analyse couvre la 

période allant de 1920 à 1940. 

IV.2-Données de Modèles Climatiques Globaux du CMIP6 du GIEC   
Le CMIP6 est la sixième phase du projet d’inter-comparaison des modèles couplés (CMIP). Les modèles 

du CMIP6 sont des versions améliorées des phases antérieures du projet (Taylor et al., 2021). Ces 

données maillées de résolutions différentes sont accessibles au public (CMIP6 Model Output Archive ; 

Eyring et al. 2016 ; https:// esgf-node.llnl.gov/search/cmip6). Cependant, la résolution moyenne des 

MCGs du CMIP6 est également plus fine que celle des MCGs du CMIP5 (Eyring et al., 2016). Le projet 

d'inter-comparaison des modèles couplés (CMIP, librement accessibles sur l’internet) est un ensemble de 

données de base qui fournit aux scientifiques les résultats les plus récents des modèles climatiques. Un 

modèle climatique est une représentation numérique du climat terrestre basée sur des équations 

mathématiques représentant de manière simplifiée les processus physiques et la dynamique du système 

climatique (Charron, 2016). Ces équations sont résolues de manière numérique à l’aide de 

superordinateurs et de méthodes numériques. Ces modèles sont de deux types, selon leur domaine spatial, 

soit les modèles climatiques globaux (MCG) et les modèles régionaux du climat (MRC). Les modèles 

globaux du climat couvrent toute la planète, avec une résolution horizontale allant de 100km à 300km. La 

circulation générale de l’atmosphère, les interactions Terre océans-atmosphère, les cycles 

biogéochimiques et d’autres interactions y sont représentés (Charron, 2016). Toutefois, à cause de leur 

résolution, ils ne peuvent décrire avec précision les effets des forçages locaux. Pour pallier ce problème, 

les modèles climatiques régionaux couvrant une zone limitée du globe ont été développés (Laprise, 2008). 

Le domaine réduit des modèles climatiques régionaux permet de résoudre des équations sur des grilles 

plus fines (10km – 50km), dans le cas d’Haïti, cela signifie environ 56 points de grille (Malheureusement 

les modèles climatiques régionaux ne sont pas disponibles pour Haïti). 

Dans le cadre ce mémoire, nous avons utilisés 9 modèles climatiques globaux du CMIP6 (Tableau 1), qui 

ont été choisis en raison de leurs performances dans la reproduction des précipitations dans les Caraïbes et 

du faible écart entre les résultats des expériences historiques et les données des observations dans la 

région de l’Amérique du nord et les caraïbes pour la période commune de 1995-2014 (Almazroui et al., 

2021b). 
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Tableau 1: modèles climatiques globaux CMIP6  choisis  pour effectuer l’analyse (Mansour et al., 2021 ; Tong et 

al.,2021). 

Modèles Résolution horizontale 

 (Lon. x lat. en degré) 

Références clés 

AWI-ESM-1-1-LR 0.9°×0.9° Semmler et al. (2020) 

BCC-ESM1 1.1°×1.1° Wu et al. (2019) 

CESM2 1.3°×0.9° Lauritzen et al. (2018) 

CESM2–WACCM 1.3°×0.9° Liu et al. (2019) 

CMCC-CM2-SR5  1.25°×0.9° Liu et al., (2009) 

CNRM–ESM2–1 1.4°×1.4° Séférian et al. (2019) 

FGOALS–f3–L 1.3°×1° He et al. (2019) 

NorESM2–MM 0.9°×1.3° Seland et al. (2020b) 

 

 

V-Méthodologie 

L’objectif de ce chapitre est de présenter les méthodes adoptées pour effectuer cette étude 

intitulée « Évaluation des MCGs du CMIP6 sur Haïti ». 

L’approche méthodologique utilisée consiste d’abord, à extraire les données de MCGs du CMIP6 aux 

stations d’observation. Pour ce faire, l’approche du plus proche voisin (KNN) qui, attribue à la station les 

données de la grille du modèle où se localise la station est adoptée. Les détails sont fournis dans la section 

V.1.2. 

Puis, une comparaison des cycles annuels de précipitations entre les modèles et des données observées a 

été réalisée. Cela permet de : 

1) Evaluer la capacité de chaque modèle à reproduire la climatologie des précipitations mensuelles 

moyennes dans chaque station. 

2) Evaluer la capacité de chaque modèle climatique global à reproduire la climatologie des précipitations 

mensuelles moyennes de l’ensemble des stations.                                                                                                               

Ensuite, l’évaluation des modèles a été faite à deux niveaux, à l’échelle interannuelle et saisonnière, en 

utilisant trois (3) indices de précipitations : le nombre de jours de pluie (RR1);  l’intensité moyenne des 

précipitations des jours pluvieux (SDII) et la quantité maximale de pluie enregistrée en une journée au 

cours d’un mois spécifique (Rx1day). Les fausses alertes qui désignent les jours où les modèles prévoient 
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des précipitations non confirmées par les observations ; les succès qui sont des jours de pluie 

correctement estimés et les ratés ou échecs qui désignent les jours où la pluie a eu lieu, mais n’a pas été 

estimée par les modèles ont été calculés sur le RR1. Des métriques statistiques continues sont calculées 

sur ces indices.  Ces derniers sont décrits dans les tableaux 3 et 4, des sous-sections V.3.1 et V.3.2. 

Le diagramme de Taylor a été utilisé pour évaluer et comparer les performances de différents modèles par 

rapport aux observations, en termes d’écart type (STD), erreur quadratique moyenne (RMSE) et de 

coefficient de corrélation (R
2
). 

V.1-Traitement de données 

V.1.1-Sélection des stations au sol 
Les données observées au sol (59 stations) présentent des discontinuités dans plusieurs stations, ce qui a 

conduit à les aligner sur une période commune, de 1920 à 1940, pour assurer la cohérence de l'analyse. 

Une fois cette période uniformisée, les pourcentages des données manquantes par station sur toute la 

période (équation 1) ont été calculé pour identifier les lacunes dans les enregistrements disponibles. 

Données manquantes (%) = 
𝐧𝐨𝐦𝐛𝐫𝐞 𝐝𝐞 𝐯𝐚𝐥𝐞𝐮𝐫𝐬 𝐦𝐚𝐧𝐪𝐮𝐚𝐧𝐭𝐞𝐬

𝐭𝐨𝐭𝐚𝐥𝐞 𝐝𝐞𝐬 𝐥𝐢𝐠𝐧𝐞𝐬 
 x 100      (1) 

En raison d'un déficit des données météorologiques provenant des stations de surface en Haïti, et dans le 

but d'obtenir un volume de données plus important, nous avons sélectionné toutes les stations dont le 

pourcentage de données manquantes sur la période 1920-1940 est inférieur à 11%. Quinze (15) stations 

sur cinquante-neuf (59) respectent ce critère (Figure 4). Parmi ces stations, 26.66% (soient 4 stations) sont 

localisées dans le département de l'Artibonite, 33.33% (soient 5 stations) dans le département de l'Ouest, 

et 33.33% dans l'ensemble des autres départements, avec une (1) station par département (Figure 5). Les 

pourcentages de lacunes dans les stations retenues pour l’analyse, ainsi que leurs noms et coordonnées, 

sont détaillés dans le tableau 2. 
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Figure 4: Pourcentage de pluies manquant dans les stations pour la période de 1920 – 1940. La ligne rouge 

représente la gamme de 11%. 
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Tableau 2 : Stations retenues avec leurs lacunes dans les données pour la période allant de 1920 à 1940 

 Station   commune 

 

Longitude 

(en dégré) 

Latitude 

(en dégré) 

    Période  

                                                      

 Lacune(%) 

P_004 Limbé -72.4 19.7 1921-1940 10.72872 

P-033 Ennery -72.483 19.483 1921-1940 9.933516 

P_043 Gros-Morne -72.683 19.667 1921-1940 10.75479 

P-057 Mirebalais -72.117 18.833 1920-1940 1.603442 

P-059 Verrettes -72.467 19.05 1921-1940 9.529396 

P-068 St-Michel -72.333 19.367 1920-1940 5.592491 

P-088 P-au-P. Lalue -72.331 18.543 1920-1940 2.776691 

P-091 Petionville -72.283 18.5 1920-1940 1.603442 

P-100 Thomazeau -72.133 18.717 1920-1940 7.182897 

P-102 Ganthier -72.062 18.532 1920-1940 9.568505 

P-104 Fond verrettes -72.05 18.517 1920-1940 1.212358 

P-114 Jacmel -72.533 18.233 1920-1940 0.795203 

P-135 Les cayes -73.75 18.183 1920-1940 3.897797 

P-143 Anse à Veau -73.35 18.5 1920-1940 3.949941 

P_150 Jérémie -74.117 18.65 1920-1940 10.85908 
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Figure 5: Localisation des stations retenues pour l’analyse 

V.1.2-Extraction des points de modèles 
Les produits pluviométriques, au format Network Common Data Form (netcdf), ont été extraits pour les 

stations observées à l'aide du logiciel python. Les données de précipitations des modèles climatiques 

globaux préalablement téléchargées (en kg/m²/s) ont été converties dans la même unité que celles 

d’observation (mm/j), en multipliant par le facteur de conversion 86400. Ensuite, la zone d’analyse a été 

extraite. Les longitudes, initialement exprimées en degrés Est, ont été ajustées au format utilisé pour Haïti 

en y ajoutant ou en soustrayant 90 degrés. 

Pour extraire les points de modèles, une approche point à grille a été utilisée pour extraire la cellule de 

grille de modèle sur les stations météorologiques sous-jacentes, ce qui produit des résultats similaires à 

ceux obtenus avec la méthode d'interpolation par le plus proche voisin (KNN) (Abel C. et al., 2020).  

Pour ce faire, on a extrait d'abord les coordonnées géographiques des emplacements des stations 

météorologiques sélectionnées. Ces dernières ont été ensuite importées dans les cellules de grille du 

modèle, Puis, nous avons identifié les cellules du modèle correspondant à chaque station et attribué les 

données de ces cellules aux points correspondants. Ensuite, les valeurs de précipitations moyennes 
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mensuelles de chaque modèle par station et la moyenne l’ensemble des stations de chaque modèle ont été 

combinées par une comparaison par rapport aux observations.  

V.2-Précipitations moyennes des modèles et des données observées au 

sol 
Tout d'abord, pour chaque station, nous avons calculé la précipitation moyenne mensuelle (pour chaque 

mois) pour chaque modèle. La précipitation moyenne mensuelle pour une station donnée est calculée 

selon la formule suivante :  

Pmoy-mois = 
1

 n
∑ P(i)n

i=1         (2) 

 Et, une comparaison a été réalisée en calculant la moyenne des précipitations mensuelles sur un ensemble 

de 15 stations pour chaque MCG.  

Pmoy-ensemble = 
1

 15
∑ P(i)15

i=1      (3) 

V.3-Evaluation des MCGs CMIP6 à partir des indices climatiques 

V.3.1-Indices de précipitations 
Les événements météorologiques extrêmes, sont par définition, des évènement qui se produisent rarement 

et qui ont très souvent d’énormes conséquences sur l’environnement, la santé humaine et l’économie 

(Obada et al., 2021). Dans le contexte du changement climatique, les épisodes de précipitations extrêmes 

deviennent de plus en fréquents et intenses. Haïti est particulièrement vulnérable à l’impact des 

précipitations extrêmes en raison d’une population constante et d’un manque de stratégies d’adaptation 

adéquates. De ce fait, pour effectuer cette analyse, sur la base de 27 indices définit par L’ETCCDI, 

parrainée par la commission pour le climat (CC) de l’organisation mondiale météorologique (OMM) et le 

projet variabilité et prévisions climatiques (Zhang X. et al., 2011), nous avons utilisé trois indices relatifs 

aux précipitations (Tableau 3). Ces indices ont été sélectionnés pour plusieurs raisons. Premièrement, ils 

sont étroitement liés aux événements hydrologiques et agricoles extrêmes (Sillmann et al., 2013). Par 

exemple, le RR1 peut être pertinent pour les pratiques agricoles et Rx1day est souvent utilisé pour décrire 

les changements dans les risques d'inondation. Ensuite, l’ensemble de ces indices reflètent à la fois 

l’intensité et la durée des événements extrêmes de précipitations (Tong et al., 2021 ; Obada et al., 2024) 

qui permettra d’évaluer les impacts des risques potentiels du changement climatiques sur les activités 

liées à l’agriculture, l’environnement et la santé humaine. Dans Cette étude, nous avons utilisé un seuil de 

précipitation ≥1 mm pour détecter les jours de pluie (Nashwan et al., 2019). 
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Tableau 3: Description de l’ensemble des  indices utilisés pour l’évaluation des modèles 

Indices Description 

RR1 (Nombre de jours humides) Nombre de jours de pluie (avec PRCP>=1mm) en un moi ou une 

année donnée en (nombre de jours) 

SDII (intensité de précipitation) Quantité de pluie sur tous les jours pluvieuse (définis comme 

PRCP>=1mm) en (mm/j) 

Rx1day (Quantité maximale de 

précipitations sur 1 jour) 

Précipitation journalière maximale sur une journée pendant un mois 

donné en (mm). 

V.3.2-Métriques statistiques utilisées                                                                                              

L’évaluation des modèles se fait à deux niveaux, à l’échelle annuelle et saisonnière, en calculant les 

indicateurs statistiques (Tableau 4) sur les indices (RR1, SDII et Rx1day) (Obada et al., 2024). Les 

indicateurs statistiques utilisés pour évaluer la performance de ces modèles sont le biais, le coefficient de 

corrélation (R
2
) et la racine carrée de l'erreur quadratique moyenne (Root Mean Squared Error – RMSE). 

La RMSE mesure l'ampleur moyenne de l'écart des produits pluviométriques par rapport aux 

observations. Une valeur de RMSE  proche de 0 indique que les produits pluviométriques sont proches de 

l’observation. Le coefficient de corrélation mesure la proportion de la variance totale des variables 

expliquée par le modèle, et le biais mesure la différence entre les données observées et simulées. Une 

valeur de biais proche de 0 indique que les données des modèles sont proches des observations, tandis 

qu'une valeur de R² proche de 0 traduit une faible correspondance entre les données des modèles et les 

observations. 

Pour approfondir l’analyse, le nombre d' évènements de pluie correctement estimés à partir des modèles 

et d'observations au sol a été déterminé. Ensuite, les fausses alertes qui font référence aux évènements 

non pluvieux simulés comme pluvieux par les modèles climatiques ont été estimées. À l'inverse, les ratés 

qui sont des événements pluvieux simulés comme non pluvieux par les modèles ont été également 

estimés. Les mesures statistiques catégorielles sont utilisées pour déterminer la capacité des modèles à 

détecter les jours pluvieux et secs. Quatre scores ont été déterminés sur ces derniers (Solomon et 

al.,2024). Le score POD qui est défini comme la capacité des modèles à estimer correctement les 

événements de pluie, sa valeur est comprise entre 0 à 1. FAR mesure la fréquence à laquelle les modèles 

détectent des précipitations non confirmées par l'observation au sol. La valeur de FAR varie de 0 à 1. Le 

FBI compare la fréquence de détection des jours de pluie des modèles avec les mesures observées au sol. 

Sa valeur varie de 0 à ∞. Un FBI inférieur à 1 indique une sous-estimation et supérieur à 1 une 

surestimation des produits de modèles. Et, le CSI est connu sous le nom de score de menace et indique le 
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rapport de tous les événements estimés et observés qui ont été correctement diagnostiqués, varie de 0 à 1. 

De plus, l’évaluation de la performance des modèles est basée sur des techniques de comparaison 

graphique, c’est-à-dire, visualisée à l'aide de techniques graphiques telles que : le graphique à barres, le 

graphique linéaire et le diagramme de Taylor. Ce dernier représente la proximité entre l'ensemble de 

données observé et l'ensemble de données de modèles (Taylor, 2001). L'écart type (STD) (équation 4), 

l'erreur quadratique moyenne (RMSE) et la valeur du coefficient de corrélation R
2
 ont été utilisés pour 

tracer le diagramme de Taylor (Taylor, 2001). Plus la valeur RMSE est faible, les modèles sont meilleurs. 

STD =√
∑ (𝒀𝒊𝟎𝒃𝒔−𝒚̅𝒐𝒃𝒔)𝟐𝒏

𝒊=𝟏

𝒏−𝟏
        (4) 

Tableau 4: Liste des métriques statistiques utilisées pour évaluer les performances des MCGs  

Métriques statistiques Equations Valeurs optimales 

Biais Ysim − Yobs 0 

 

RMSE √
1

n
∑ ei

2

n

i=1

 

 

0 

 

R
2
 

 

1- 
SSres

SStot
  =  

∑(Yobs−Ysim)2

∑(Y0bs−y̅obs)2 

 

1 

 

POD 

 

Succès 

Succès + Ratés
 

 

1 

 

FAR 

 

 

Fausses alertes

Succès + Fausses alertes
 

 

                        0 

 

FBI 

 

 

Succès + Fausses alertes

Succès + Ratés
 

 

1 

 

CSI 

 

succès

Succès + Ratés + Fausses alertes
 

 

                        1 
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VI- Résultats & Discussions 

VI.1-Précipitations moyennes mensuelles des modèles par rapport aux 

données observées au sol                                                                                                     
Les résultats de la comparaison graphique entre les observations et les modèles climatiques sont présentés 

sur la Figure 6. Il ressort des résultats que les  précipitations moyennes mensuelles des données observées 

affichent deux saisons alternées. Une saison pluvieuse qui part de mars à mai, et séparée par une période 

sèche (juin-août). La saison pluvieuse recommence de septembre à novembre, suivi d’une autre période 

sèche de décembre à février (DJF). Les précipitations varient de 38 à 214mm/mois environ, et 

caractérisées par une distribution bimodale (mai et octobre) (210 mm/mois et 175 mm/mois environ) 

(Figure 6).  La majorité des modèles  reproduit bien le cycle de précipitation observé, avec un décalage en 

juin ; et une sous-estimation des précipitations observées. Sur neuf (9) modèles analysés, trois (3) 

(CESM2, CESM2–WACCM CNRM–ESM2–1 et NorESM2–MM) génèrent des pics en juin et octobre. 

Et, deux (2) modèles (AWI-ESM-1-1-LR et CNRM–ESM2–1) surestiment les valeurs de précipitations 

en octobre. Par ailleurs, les précipitations moyennes mensuelles de l’ensemble des modèles sous-estiment 

celles des données observées au sol dans toutes les saisons (Figure 7). 
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Figure 6: Précipitations moyennes mensuelles des modèles par rapport aux stations observées aux sols, obtenues par 

la moyenne des modèles 

Figure 7: Précipitations moyennes mensuelles de l’ensemble des modèles par rapport aux stations observées au sol, 

obtenues par la moyenne des modèles      

Les résultats permettent de catégoriser les modèles ainsi : La première catégorie (marquée « B » dans le 

Tableau 5), se compose de 5 modèles capables de simuler une distribution bimodale similaire à celle 

observée avec des pics en juin et octobre ponctués d'une période plus sèche en juillet. La deuxième 

catégorie, (marquée « SM » en Tableau 5), comprend deux (2) modèles qui simulent une distribution 
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bimodale avec des pics en mai et octobre, mais ne parviennent pas à simuler de période sèche en juillet. 

La troisième catégorie comprend le modèle TaiESM1 (marquée « B1 ») qui simule une distribution 

bimodale similaire à celle observée avec des pics en mai et novembre, séparée par une période sèche 

(juillet). Et, le modèle AWI-ESM-1-1-LR (marquée « S ») qui simule une seule saison humide (juin à 

octobre), sans pointe en juin et pas de sécheresse au milieu en juillet. Par ailleurs, la moyenne de 

l’ensemble des MCGs simule la distribution bimodale de la première catégorie des MCGs (Figure 7). 

Tableau 5: Caractérisation climatique des précipitations par les modèles 

Modèles Caractéristiques 

AWI-ESM-1-1-LR S 

BCC-ESM1 B 

CESM2
 

B 

CESM2–WACCM B 

CMCC-CM2-SR5 SM 

CNRM–ESM2–1 B 

FGOALS–f3–L SM 

NorESM2–MM B 

TaiESM1 B1 

Les résultats de précipitations moyennes mensuelles obtenus à partir des données observées au sol par 

station, montrent une distribution bimodale avec deux pics (mai et octobre), séparés par une petite période 

sèche en juillet, ce qui permet de classer les stations en trois groupes. Le premier groupe (P_033, p_043, 

P_057, P_068, P_088, P_091, P_102 et P_104) génère deux pics (mai et septembre) et une période sèche 

en juillet ; le deuxième (P_100, P_114, P_135 et P_143) qui génère deux pics de précipitions (mai et 

octobre) et une petite période sèche en juillet ; et le troisième regroupe les stations P_004 et P_150 qui 

génèrent deux pics (mai et novembre), séparés par une période sèche au mois de juillet (Figure 8). Quant 

aux modèles, la majorité d’entre eux reproduit le cycle de précipitation du deuxième groupe dans 

quasiment toutes les stations. C’est-à-dire une distribution bimodale, avec un petit décalage en juin, limité 

par une période sèche au mois de juillet, et l’autre pic en octobre (Exception faite pour les modèles AWI-

ESM-1-1-LR, CMCC-CM2-SR5 et FGOALS–f3–L). De plus, 8 modèles sur 9 (environ 89%) des 

modèles climatiques globaux (MCGs) sous-estiment les valeurs de précipitations mensuelles par rapport 

aux données observées dans 10 stations (Figure 4). Les pluies les plus élevées sont enregistrées dans la 

péninsule Sud et Nord (P_004, P_057, P_135, P_059, P_104, P_150), comme avait souligné Moron et al. 

(2015).   
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Figure 8: Précipitations moyennes mensuelles par station des modèles par rapport aux stations observées au sol. 

  

Conclusion partielle                                                                                                                                                      

Les modèles utilisés ont bien capturé le cycle bimodal de pluie qui caractérise la pluviométrie d’Haïti, 

avec de forte sous-estimation pour certaines stations (P-104 et P-059, par exemple). Cependant, les 

cumuls de pluies et les périodes où les pics de pluies ont été observés diffèrent pour plusieurs stations 

(Figure 8). Les pluies les plus élevées sont enregistrées dans la péninsule Sud, Nord et vallée de 

l’Artibonite. 
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VI.2-Performance des MCGs du CMIP6 à l’échelle annuelle sur la 

période de 1920 à 1940 

VI.2.1-Capacité des MCGs à estimer le nombre de jours de pluie (RR1) annuel 
Entre les années 1920 et 1940, le nombre de jours de pluie estimé par les modèles climatiques globaux 

(MCGs) varie d'une année à l'autre et tend à surestimer ces valeurs par rapport aux données observées. À 

l'échelle annuelle, la performance des MCGs est limitée, avec un coefficient de corrélation R² de 

seulement 0.16 (Figure 9a). La performance est encore plus faible à l'échelle interannuelle saisonnière, 

avec le coefficient de corrélation maximal (0.05), observé pendant la saison SON (Figure 9b). 

À l'échelle saisonnière, le nombre de jours de pluie estimé par les modèles, calculé à partir de la moyenne 

des jours de pluie des différentes stations, varie d'une saison à l'autre. Les valeurs les plus élevées sont 

observées durant les saisons SON et JJA, tandis que les valeurs les plus faibles se situent en saison sèche 

(DJF). Ces résultats suggèrent que, bien que les modèles MCGs réussissent à représenter les jours de 

pluie. Toutefois, ils surestiment systématiquement ces valeurs par rapport aux observations au sol (Figure 

9b). 
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a) 

 

 

b) 

 

Figure 9: Variabilité interannuelle et saisonnière interannuelle du nombre de jours de précipitations. 
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VI.2.2-Aptitude des MCGs à estimer l’intensité de pluie (SDII) annuelle  
L’intensité de pluie des données observées au sol varie d’une année à l’autre et commence à augmenter à 

partir de 1923. Contrairement aux données observées, l’ensemble des modèles climatiques globaux 

(MCGs) montre peu de variation d’intensité de pluie et sous-estime systématiquement ces valeurs par 

rapport aux observations. La performance des MCGs à l’échelle annuelle est limitée, avec un coefficient 

de corrélation (R²) de seulement 0.36 (Figure 10a). À l’échelle interannuelle saisonnière, la performance 

est encore plus faible, avec un coefficient de corrélation maximal de seulement 0.13, enregistré durant la 

première saison pluvieuse (MAM) (Figure 10b). 

 

Figure 10 : Variabilité interannuelle et saisonnière interannuelle de l’intensité de précipitations.  

a) 

 

b) 
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VI.2.3-Capacité des MCGs à estimer l’intensité journalière maximale de  

précipitations mensuelles (Rx1day) 
Tout au long de l’année, les précipitations journalières maximales (Rx1day) de la moyenne de l’ensemble 

des MCGs oscillent autour de 45 à 50mm. Les années 1924 et 1928 se distinguent par des précipitations 

particulièrement intenses. En revanche, les données observées au sol indiquent que les années 1931et 

1935 enregistrent les plus fortes précipitations, avec des valeurs moyennes oscillant entre 61mm et 

143mm. Ces valeurs semblent augmenter au fil du temps. Les MCGs sous-estiment ces valeurs par 

rapport aux données observées tout au long de la période étudiée (Figure 11). 

Les résultats obtenus montrent une faible corrélation entre les Rx1day des données observées et celles 

issues des MCGs, avec R² = 0.04. Les précipitations journalières maximales (Rx1day) les plus intenses, 

selon les MCGs, se produisent en JJA et SON, ce qui est en décalage par rapport aux observations. Cela 

indique que la performance des MCGs dans la représentation des Rx1day reste faible, avec des 

coefficients de corrélation nuls pour toutes les saisons, comme illustré par la Figure 12. L’ensemble des 

MCGs peine ainsi à représenter correctement la variation des précipitations journalières maximales par 

rapport aux données observées, avec de fortes sous-estimations.                                                              

Figure 11 : Variabilité interannuelle  de précipitations journalières maximales pendant un mois spécifique. 
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Figure 12 : Variabilité interannuelle saisonnière de précipitations journalières maximales pendant un mois 

spécifique. 

 

Conclusion partielle 
L’indicateur statistique R

2 
a été utilisé pour évaluer la performance des MCGs sur les indices RR1, SDII 

et RX1day. Concernant RR1, la valeur de R
2
 calculée à l’échelle annuelle est de 0.16. Les valeurs sont 

encore plus faibles à l’échelle saisonnière interannuelle, variant de 0.01 à 0.05, ce qui traduit une faible 

performance. Pour SDII, les résultats sont quasiment similaires, avec des valeurs encore plus faibles 

(entre 0 et 0.01) pendant les saisons, et une valeur de 0.36 à l’échelle annuelle. En ce qui a trait à RX1day, 

les résultats sont encore plus préoccupants, avec des corrélations nulles pendant toutes les saisons. Les 

coefficients de corrélation à différentes échelles montrent qu'il n’existe pas de correspondance 

raisonnable entre les indices RR1, SDII et RX1day des données observées et celles des modèles. 
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VI.3-Performance des MCGs CMIP6 à l’échelle saisonnière sur la 

période de 1920 à 1940 

VI.3.1-Aptitude des MCGs à estimer le nombre de jour de pluie (RR1) à l’échelle 

saisonnière 
Les résultats montrent que les nombres de jour de pluies les plus faibles détectés par les MCGs sont 

observés en DJF et MAM. Tandis que, les nombres plus importants sont enregistrés  en SON et JJA, ce 

qui est similaire aux données observées (Figure 13). Cependant, dans toutes les stations, la majorité des 

MCGs surestime ces valeurs par rapport aux observations. Quant à la deuxième saison pluvieuse (SON), 

tous les MCGs surestiment les valeurs du nombre de jour de pluvieux (Figure 14). Durant la saison sèche, 

les jours de précipitations (RR1) des données observées varient de 3 à 22 jours. La majorité des MCGs 

tend à surestimer les RR1 dans presque toutes les stations, à l'exception de P-004 et P-135. Pendant le 

printemps (MAM), les données observées montrent des RR1 variant entre 15 et 35 jours. Un premier 

groupe de stations (P_033, P_043, P_059, P_100, P_102 et P_150) voit la majorité des MCGs surestime 

les RR1, tandis que pour un second groupe (P_004, P_057 par exemple), les modèles sous-estiment ces 

valeurs. Comparé à l'hiver, le RR1 observé est plus élevé en MAM. En été (JJA), les jours de pluie 

augmentent par rapport au printemps, avec des valeurs de RR1 allant de 10 à 47 jours, tendance 

également surestimée par les modèles. Enfin, en automne (SON), les RR1 obtenus à partir des données 

observées varient entre 17 et 41 jours, des valeurs généralement plus élevées qu'en été. 

Cependant, en termes de performance (Tableau 6 et Figure 15), les modèles montrent des biais importants 

et des erreurs quadratiques moyennes (RMSE) très élevées, avec des valeurs de RMSE variant de 5 à 42 

jours  dans la grande saison sèche DJF (décembre-janvier-février) ; 7jours  à  24 jours dans la saison 

pluvieuse MAM (mars-avril-mai); 9 à 39 jours en JJA et autour de 13 à 42 jours en SON (septembre-

octobre-novembre). Les coefficients de corrélation R² sont également faibles, variant de 0 à 0.10 pour la 

saison DJF et de 0 à 0.14 pour MAM (mars-avril-mai), avec des valeurs encore plus faibles (0 à 0.05) 

pour les autres saisons. Les biais sur les indices RR1 (fréquence des jours de pluie) varient 

considérablement d'une saison à l'autre et restent très élevés. En DJF et SON, tous les MCGs présentent 

des biais positifs. Les modèles CESM2-WACCM et CESM2 sont les meilleurs en DJF, avec des biais de 

0 et 1 jour, respectivement (Figure 10). En JJA, les modèles CESM2 et TaiESM1 affichent les biais les 

plus faibles, tandis qu'en MAM, 5 modèles présentent des biais positifs (Figure 15). 

L'évaluation des biais saisonniers montre que les modèles n'ont pas une performance cohérente dans 

toutes les saisons. En DJF et SON, tous les modèles présentent des biais positifs, tandis qu'en JJA, les 
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modèles CESM2 et TaiESM1 montrent des biais humides et plus faibles, ce qui suggère une meilleure 

représentation du nombre de jours de pluie.  

 

                                                              

Figure 13: nombre de jours de pluie dans les saisons, obtenu par moyenne des stations 
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Figure 14 : nombre de jours de pluie dans les saisons, obtenu par moyenne des stations 

 



 
 

 32  

 

 

Figure 15 : Biais moyen saisonnier sur le nombre de jour de pluie obtenu à partir de la moyenne de l’ensemble des 

stations. Les barres orientées vers le bas indiquent le nombre de jour de pluie des MCGs est inférieur à l’observation 
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Tableau 6: Tableau  récapitulatif des biais (en nombre de jours), des erreurs quadratiques moyennes (jours) et des 

coefficients de corrélation (R
2
)  du nombre de jours de pluie  par saison. 

    

        

DJF     

      

MAM     

      

JJA     

      

SON   

Modèles 

     

Biais 

   

RMSE R² 

   

Biais RMSE      R² 

   

Biais 

   

RMSE        R² 

     

Biais 

   

RMSE      R² 

AWI-ESM-1-1-LR 26 27 0.084 -3 9 0.03 23 23 0.05 36 37 0.04 

BCC-ESM1 7 8 0.1 -7 10 0.02 -3 9 0.02 17 18 0.001 

CESM2-WACCM 0 5 0.07 -5 8 0.005 -2 10 0.004 13 14 0.02 

CESM2 1 5 0.07 -3 8 0.005 0 10 0.002 16 17 0.02 

CMCC-CM2-SR5 40 42 0.002 23 24 0.1 32 32 0.0003 42 42 0.04 

CNRM-ESM2-1 10 17 0.02 5 17 0.02 22 39 0.012 25 32 0.02 

FGOALS-f3-L 24 30 0.03 8 19 0.03 9 22 0.008 16 24 0.01 

NorESM2-MM 3 6 0.05 4 9 0.05 9 13 0.005 17 19 0.00008 

TaiESM1 30 31 0.002 22 23 0.14 -1 11 0.0003 25 26 0.04 

Conclusion Partielle 
Le biais, la RMSE et R

2
 ont été utilisés pour évaluer les MCGs sur le RR1 par saison. La majorité des 

MCGs (environ 70%) présentent des biais compris entre 7 et 42jours. Les RMSE varient de 5 à 42 jours, 

et les valeurs de R
2 
se situent entre 0 et 0.14, ce indique une faible performance. Cela souligne les limites 

des MCGs à capturer avec précision les variations de la fréquence des jours de pluie. 

 

VI.3.2-Capacité des MCGs à estimer l’intensité de pluie (SDII) à l’échelle 

Saisonnière  
À l’échelle saisonnière, l’intensité de pluie estimée par les modèles, calculée à partir de la moyenne des 

intensités des stations, varie d’une saison à l’autre. Les valeurs les plus élevées sont enregistrées en SON 

et JJA, où tous les MCGs ont leurs intensités de pluies inferieures à 7.5mm/j et 9.5mm/j, respectivement. 

Contrairement aux stations de surface qui enregistrent des intensités les plus importantes (>17.5mm/j) en 

MAM et SON. Ces résultats montrent que les modèles ne capturent pas bien l’intensité de pluie par 

rapport aux données observées au sol (Figure 16), et sous-estiment ces valeurs dans toutes les stations et 

toutes les saisons (Figure 17). 

De plus, en termes de performance, les modèles ne se comportent pas bien, affichant des biais et RMSE 

relativement élevés. Les biais saisonniers sur les SDII varient d’une saison à l’autre. Cependant, les 

résultats montrent que les modèles MCGs ont une performance cohérente dans toutes les saisons (tous les 

MCGs présentent des biais secs dans toutes les saisons) avec des valeurs qui oscillent entre -6mm/j à -
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10.09 mm/j dans la grande saison sèche ; -10.97mm/j à -14.65mm/j dans la première saison 

pluvieuse(MAM). Pour les deux autres saisons, les biais dans les modelés se trouvent dans le même 

intervalle (-9.8 à -13.63 mm/j) (Figure 18). 

 Les valeurs des RMSE dans les modèles varient d’une saison à une autre, la plus faible (8.36mm/j) est 

produite par le modèle AWI-ESM-1-1-LR, dans la grande saison sèche. Pour les saisons MAM, JJA et 

SON, les biais dans les modèles varient de 14.85 à 15.35mm/j ; 10.63 à 13.97mm/j et 9.92 à 14.25mm/j, 

respectivement. Ainsi, des coefficients de corrélation R² très faibles, variant de 0 à 0.20 pour les saisons 

DJF et MAM, de 0 à 0.22 en JJA, et encore plus faibles pendant la période cyclonique (SON) (Figure 18, 

Tableau 7). 

 

Figure 16: Intensité moyenne de précipitation saisonnière obtenue à partir de la moyenne des stations 
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Figure 17 : Intensité moyenne de précipitation saisonnière  obtenue par station 
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Figure 18: Biais moyen saisonnier sur l’indice simple  de pluie obtenu à partir de la moyenne de l’ensemble des 

stations 

 

Tableau 7 : Tableau  récapitulatif des biais, des erreurs quadratiques moyennes(RMSE) en mm/j et  des coefficients 

de corrélation(R
2
) de l’intensité de pluie  par saison 

  

        

DJF 

  

      

MAM 

  

      JJA 

  

      

SON 

 

     Modèles Biais 

     

RMSE       R² Biais RMSE   R² Biais  RMSE R² Biais RMSE  R² 

AWI-ESM-1-1-L1 -6.76 8.36 0.08 -11.49 12.63  0.2 -10.58 11.6 0.002 -10.65 11.41 0.0007 

BCC-ESM1 -9.81 11.05 0.08 -14.29 15.03 0.01 -13 13.85 0.0012 -13.68 14.25 0.038 

CESM2-WACCM -10.08 11.29 0.035 -14.65 15.39 0.001 -11.58 12.51 0.008 -11.92 12.59 0.0026 

CESM2 -10.09 11.26 0.2 -14.45 15.2 0.002 

   

12.22 13.12 0.0047 -12.32 12.97 0.00001 

CMCC-CM2-SR5 -9.9 11.12 0.14 -14.17 14.93 0.002 -12.73 13.6 0.006 -13.53 14.12 0.05 

CNRM-ESM2-1 -6.76 8.49 0.0009 -10.97 11.85 0.06 -9.44 10.63 0.007 -9.89 9.92 0.05 

FGOALS-f3-L -8.72 10.1 0.0003 -13.94 14.74 0.07 -9.8 11.008 0.008 -10.75 11.45 0.05 

NorESM2-MM -9.28 10.53 0.168 -13.12 13.93 0.002 -10.78 11.79 0.016 -11.77 12.44 0.05 

TaiESM1 -9.73 10.97 0.04 -13.92 14.7 0.0028 -13.11 13.97 0.022 -13.63 14.21 0.05 
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Conclusion Partielle  
Le biais, la corrélation et la  RMSE ont été également appliquées sur l’indice SDII pour évaluer les 

MCGs. Les biais des MCGs, variant 6.76 à 14.65mm/j, tandis que et les RMSE se situent entre 8 et 

15mm/j. De plus, les valeurs des coefficients de corrélation (0 à 0.24) indiquent une faible performance. 

Ces résultats permettent de conclure que les GCMs ne présentent pas de meilleures performances dans la 

représentation l’intensité de pluie par rapport données d’observation. Cela est illustré par des coefficients 

de corrélation très faibles, des biais et des RMSE élevés. En outre, les MCG sous-estiment les valeurs 

élevées de SDII par rapport aux observations pour toutes les saisons.  

                                                   

VI.3.3-Performance des MCGs dans la représentation de l’intensité journalière 

maximale (Rx1day) 
À l'échelle saisonnière, la pluie journalière maximale estimée par les modèles, calculée à partir de la 

moyenne des pluies journalières maximales des différentes stations, varie d'une saison à l'autre. Les 

valeurs les plus élevées sont enregistrées durant les saisons SON et JJA, avec des valeurs supérieures à 50 

et 40mm, respectivement. Contrairement aux données observées au sol, où les pluies maximales sont 

enregistrées dans les saisons pluvieuses (MAM, SON). Ces résultats suggèrent que, les MCGs ne 

parviennent pas à bien représenter les Rx1day à l’échelle saisonnière, et sous-estiment ces valeurs par 

rapport aux observations au sol en toutes saisons (Figure 19).  

En JJA, SON et DJF, les résultats permettent de classer les stations en 2 catégories : la première regroupe 

les stations où les Rx1day des MCGs surestiment l’observation et la seconde catégorie comprend les 

stations où les Rx1day de certains MCGs sous-estiment l’observation. Les MCGs génèrent la pluie les 

plus intenses en JJA et SON, contrairement aux observations des stations au sol qui enregistrent ces pluies 

en MAM et SON (Figure 20). 

En ce qui concerne le biais, les modèles montrent des biais importants et des erreurs quadratiques 

moyennes (RMSE) très élevées. Les RMSE varient de 14.76mm à 21.77mm dans la grande saison sèche 

(DJF) ; 32.24mm à 40.54mm dans la première saison pluvieuse (MAM) ; 22.25mm à 37.72mm et 

26.56mm à 40.87mm en JJA et SON, respectivement. Les coefficients de corrélation R² sont également 

faibles, variant de 0 à 0.16 en  DJF et de 0 à 0.22 en MAM, avec des valeurs encore plus faibles pour les 

autres saisons, excepté les modèles CESM2-WACCM , NorESM–MM et TaiESM1 ont des coefficients 

de corrélation 0.10, 0.10 et 0.2, respectivement, en SON où les activités  cycloniques sont maximales 

(Tableau 8). 

Les biais sur l’indice de précipitations maximales (Rx1day) varient considérablement d'une saison à 

l'autre et restent très élevés. Tous les MCGs présentent des biais secs pendant toutes les saisons. Les biais 
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minimaux observés sont enregistrés par les modèles AWI-ESM-1-1-LR (-5.5mm) et FGOALS-F3-L (-

8.16mm), respectivement, en DJF (Figure 21). 

  

Figure 19 : Précipitation journalière maximale pendant un mois, obtenue à partir de la moyenne des stations. 
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Figure 20 : Précipitation journalière maximale  pendant un mois, obtenue par station 
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Figure 21 : Biais moyen saisonnier sur la pluie journalière maximale(Rx1day) obtenu à partir de la moyenne de 

l’ensemble des stations. 

 

 

Tableau 8: Tableau récapitulatif des biais, des erreurs quadratiques moyennes (RMSE) en mm et des coefficients de 

corrélation (R
2
)  de pluie journalière maximale  par saison 

  

      DJF 

  

      MAM 

 

      JJA 

  

      SON 

 Modèles Biais RMSE R² Biais RMSE R² Biais RMSE R² Biais RMSE R² 

AWI-ESM-1-1-LR -5.5 14.76 0.0001 -31.94 34.95 0.22 -27.5 30.13 0.019 -30.37 34.44 0.02 

BCC-ESM1 -15.43 20.44 0.14 -36.5 38.95 0.005 -35.07 37.2 0.03 -34.42 37.9 0.0008 

CESM2-WACCM -16.99 21.77 0.13 -38.16 40.54 0.1 -30.45 32.83 0.039 -30.48 34.12 0.1 

CESM2 -16.81 21.58 0.2 -38.8 39.27 0.09 -31.46 33.75 0.039 -30.67 34.29 0.078 

CMCC-CM2-SR5 -13.53 19.22 0.03 -34.66 37.39 0.1 -32.61 34.87 0.032 -37.86 40.87 0.25 

CNRM-ESM2-1 -9.28 17.19 0.01 -29.06 32.24 0.008 -24.39 28.35 0.002 -25.89 30.5 0.0007 

FGOALS-f3-L -8.16 16.35 0.013 -31.93 34.67 0.007 -17.49 22.25 0.0005 -19.77 26.56 0.01 

NorESM2-MM -14.79 19.88 0.16 -33.49 36.3 0.08 -25.32 28.11 0.041 -29.09 32.81 0.2 

TaiESM1 -13.64 19.35 0.016 -33.46 36.27 0.12 -35.7 37.72 0.026 -38.43 32.81 0.1 
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Conclusion Partielle 
Le biais, la RMSE et la corrélation ont été utilisés  pour évaluer l’indice RX1day. Les valeurs des biais et 

RMSE varient respectivement de 6 à 38.16mm et 16.76 à 40.84mm. De plus, les valeurs de R², comprises 

entre 0 et 0,25, mettent en évidence les limites des MCG à représenter avec précision la pluie journalière 

maximale. Ces biais et RMSE élevés, ainsi que les faibles coefficients de corrélation, indiquent que les 

modèles ne parviennent pas à simuler efficacement la pluie journalière maximale.  

              

VI.4-Capacité des MCGs à détecter  les jours humides et secs (POD, 

FAR, FBI et CSI)  

La compétence de détection des précipitations (POD) des GCMs varie d’une saison à une autre. Les 

observations révèlent que :  

Dans la saison sèche (DJF), les modèles CESM2-WACCM, CESM2 et NorESM2-MM reproduisent 

chacun 11% d’évènements de pluies, ils manquent chacun 89%, d'événements supplémentaires, C’est le 

modèle CMCC-CM2-SR2 qui détecte plus ou moins bien les jours de pluies observées avec une valeur de 

POD de 0.556, ce qui signifie que ce modèle peut détecter plus de 55.6 % d'événements pluvieux sur 

Haïti. 

En SON, 22% des MCGs détectent moins de 40% des évènements pluvieux, seuls les TaiESM1 et 

CMCC-CM2-SR5 qui enregistrent 54% et 52% des événements pluvieux, respectivement. 

 En JJA, les modèles traduisent mieux les jours de précipitations qu’en MAM, excepté le modèle 

TaiESM1 pour lequel une baisse de capacité est enregistrée. En effet, la valeur de POD est passée de 

0.545 pour la saison MAM à 0.25 pour la saison JJA. Les meilleurs modèles sont CNRM-ESM2-1 et 

AWI-ESM-1-1-LR. 

Sur les 9 MCGs utilisés, 5 modèles (soit 55.5%) détectent les pluies plus ou moins bien en SON,  avec 

des valeurs de POD allant de 0.5 à 0.76. Les 5 meilleurs modèles sont : CMCC-CM2-SR5, AWI-ESM-1-

1-LR, CESM2-WACCM, CESM2, CNRM-ESM2-1 et TaiESM1 (Tableau 9 et Figure 22a).  

En ce qui a trait à la fausse alerte, les résultats montrent des valeurs élevées en DJF, avec des FAR qui 

varient de 86% à 90%, environ. Un résultat quasiment similaire est constaté pour les autres saisons MAM, 

JJA et SON, avec des valeurs de FAR qui varient de 0.68 à 0.73 ; 0.69 à 0.73 et 0.66 à 0.70, 

respectivement (Figure 22b).  

Les valeurs FBI de la majorité des GCMs sont supérieures à 1en DJF,  ce qui indique les jours de pluie 

estimés par des MCGs surestiment  ceux des données observées au sol, excepté le CESM2-WACCM qui 

a une valeur de FBI inférieur à 1. Tout comme, en MAM, 5 modèles (CMCC-CM2-SR5, CNRM–ESM2–
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1, EC-Earth3-CC, FGOALS–f3–L, NorESM2–MM, TaiESM1) sur 9 surestiment les jours de pluie 

(Figure 22c). Tandis qu’en JJA, seuls les modèles BCC-ESM1, CESM2–WACCM et TaiESM1 sous-

estiment les jours de pluie avec des valeurs de FBI inferieure 1. Et, dans le pic de la saison cyclonique 

(SON), tous les modèles surestiment les jours de pluie. 

La valeur du CSI montre que la correspondance globale entre les données de modèles et les évènements 

de pluie observés au sol n'était pas satisfaisante pour tous les MCGs, et dans toutes les saisons, avec des  

valeurs de CSI bien inférieure à la valeur optimale de un(1) (Figure 22d)  

 

 

Figure 22: Capacité des MCGs à indiquer les jours humides et secs, avec 4 métriques statistiques sur Haïti. Ces box 

plots offrent un résumé de la distribution des scores calculés sur chacun des 15 stations considérées: la ligne centrale 

indique la médiane, le point rouge indique la moyenne, les bords du rectangle sont le 1
er

 quartile et le 3
eme

 quartile. 

Les extrémités des lignes définissent un seuil qui ne peut excéder 1.5 fois l'écart interquartile, et les losanges noirs, 

lorsqu'ils existent, sont des points qui se situent en dehors du seuil de la boîte 

a) 
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b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 44  

 

c) 

 

d) 
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Tableau 9: Scores de compétence de détection des précipitations quotidiennes (seuil ≥1 mm) estimées par modèle et 

les données observées au sol. 

    DJF       MAM       JJA       SON     

Modèles                       POD FAR FBI CSI POD FAR FBI CSI POD FAR FBI CSI POD FAR FBI CSI 

 

AWI-ESM-1-1           0.347 0.9 5.09 0.08 0.22 0.74 0.941 0.13 0.496 0.72 2.003 0.212 0.71 0.694 2.468 0.27 

BCC-ESM1 0.159 0.9 2.29 0.06 0.2 0.72 0.799 0.129 0.228 0.722 0.927 0.139 0.467 0.71 1.715 0.216 

CESM2-WACCM 0.081 0.91 1.22 0.04 0.24 0.7 0.869 0.151 0.251 0.694 0.91 0.155 0.455 0.685 1.53 0.226 

CESM2 0.125 0.89 1.42 0.06 0.24 0.73 0.96 0.14 0.279 0.7 1.036 0.164 0.501 0.681 1.665 0.239 

CMCC-CM2-SR5 0.564 0.89 6.72 0.1 0.52 0.74 2.135 0.209 0.614 0.713 2.42 0.239 0.76 0.697 2.649 0.275 

CNRM-ESM2-1 0.211 0.89 2.69 0.07 0.35 0.7 1.235 0.177 0.514 0.711 2.133 0.193 0.591 0.691 2.006 0.246 

FGOALS-f3-L 0.364 0.9 4.67 0.08 0.37 0.72 1.423 0.175 0.355 0.712 1.505 0.169 0.469 0.698 1.648 0.215 

NorESM2-MM 0.124 0.9 1.7 0.05 0.36 0.7 1.318 0.188 0.355 0.711 1.369 0.185 0.526 0.67 1.688 0.251 

TaiESM1 0.439 0.89 5.35 0.09 0.51 0.74 2.088 0.206 0.258 0.697 0.985 0.153 0.56 0.709 2.015 0.235 

 

Conclusion partielle 
Les indicateurs POD, FAR, FBI et CSI ont été utilisés afin d’évaluer 9 MCGs CMIP6 sur Haïti. En ce qui 

concerne le POD, les valeurs pour les saisons DJF, MAM et JJA se situent entre 0.11 et 0.56, ce qui 

traduit une faible performance est enregistré. Toutefois, pendant la saison SON, les modèles se sont 

démarqués en surpassant cet intervalle, avec des valeurs comprises entre 0.44 à 0.76. Concernant le FAR, 

les valeurs varient entre 0.66 et 0.90, indiquant également une faible performance. S’agissant du FBI, les 

MCGs surestiment le nombre de jours de pluie dans quasiment toutes les saisons, avec des valeurs allant 

de 1.036 à 5.11. Toutefois, les modèles AWI-ESM-1-1-LR, BCC-ESM1, CESM2, CESM2–WACCM 

sous-estiment le nombre de jours de pluie en MAM, avec des valeurs de FBI respectives de 0.82, 0.69, 

0.81 et 0.77. Les valeurs de CSI, quant à elles, varient de 0.05 à 0.27, soulignant une faible performance.  

Ainsi, les MCGs n'arrivent pas à détecter efficacement les jours humides et secs, reflétant leurs limites 

dans la représentation des conditions hydrométéorologiques sur Haïti. 
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VI.5-Diagramme de Taylor entre les modèles CMIP6 et les données 

observées (1920-1940) 
La performance des MCGs à reproduire les indices RR1, SDDI et Rx1day varient selon les saisons et 

l’indice considéré. Un modèle performant dans la reproduction d’un indice donné n’est pas 

nécessairement performant pour un autre. Prenons, à titre d’exemple, le modèle TaiESM1 qui présente 

une performance pour reproduire le nombre de jours de pluie avec, une valeur R
2
 de 0.002 en DJF, qui 

passe à 0.14 en MAM, et une RMSE de 31jours en DJF, qui réduit à 23 jours en MAM. Il en est de 

même, le modèle CMCC-CM2-SR5 affiche des valeurs R
2
 de 0.002 et RMSE de 42 jours en DJF, qui 

s’améliorent respectivement à 0.10 et 24 jours en MAM (Figure 23). Cependant, ce même modèle 

(CMCC-CM2-SR5) est plus performant pour reproduire l’intensité des précipitations en DJF (R
2
 de 0.14 

et RMSE de 11.12mm/j) qu’en MAM (R
2 

de 0.002 et RMSE de 14.93mm/j) (Figure 24). En outre, le 

modèle CMCC-CM2-SR5 se place au deuxième rang parmi les plus meilleures pour reproduire RX1day 

en MAM et au premier rang en SON, avec des valeurs de R
2
 de 0.10 et 0.25, respectivement (Figure 25). 

VI.5.1- Diagramme de Taylor sur le nombre de jours de pluie (RR1)  

a) 

 

b) 

 

Figure 23: Diagrammes de Taylor du nombre de jours entre les modèles CMIP6 et les observations sur Haïti pour la 

période 1920-1940.  
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VI.5.2-Diagramme de Taylor sur  l’intensité de précipitations (SDII) 

  

Figure 24: Diagrammes de Taylor de l’intensité de pluie(SDII) entre les modèles CMIP6 et les observations sur 

Haïti pour la période 1920-1940.  

 

VI.5.3-Diagramme de Taylor sur la pluie journalière maximale de précipitations 

(Rx1day) 

  

Figure 25: Diagrammes de Taylor  de pluie journalière maximale (Rx1day) entre les modèles CMIP6 et les 

observations sur Haïti pour la période 1920-1940.  
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Conclusion Partielle 
Concernant le RR1, le coefficient de corrélation de la majorité des MCGs (environ 70%) se situe entre 

0.02 et 0.14 pendant les saisons DJF, MAM et JJA (Figure 23), traduisant une faible performance. Des 

résultats presque similaires sont observés pour la RX1day, avec des valeurs de R
2
 comprises entre 0 et 

0.25. En ce qui concerne le SDII, les valeurs de R
2
 varient de 0 à 0.20 pour les saisons DJF et MAM, et 

sont encore plus faibles en JJA et SON, où tous les MCGs affichent des valeurs de R
2
 inferieures à 0.02). 

Les résultats visualisés à partir du diagramme de Taylor montrent que les MCGs ne présentent pas de 

bonnes performances dans la reproduction de RR1, SDII et  Rx1day. 
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Conclusion & Perspectives 

L'évaluation des modèles climatiques globaux du CMIP6 du GIEC sur Haïti, pour la période 1920-1940 

révèle des lacunes dans leur capacité à représenter les précipitations observées. Bien que la majorité des 

modèles du CMIP6 reproduisent globalement le cycle annuel des précipitations par rapport aux données 

au sol, des biais élevés sont présents, notamment des surestimations durant certaines périodes de l'année, 

comme en novembre. Les faibles coefficients de corrélation, les biais et les erreurs quadratiques 

moyennes importantes dans la reproduction du nombre de jours de pluie, de l'intensité des précipitations 

et de la pluie journalière maximale montrent que ces modèles ne présentent pas de bonne performance, en 

particulier à l'échelle saisonnière. Ces résultats insatisfaisants peuvent être dus à un déficit de données. De 

plus, les performances des MCGs dans la détection des précipitations, mesurées à travers des métriques 

statistiques comme le POD, le FAR, le FBI et le CSI, montrent des résultats globalement insatisfaisants, 

en particulier avec une forte surestimation des jours de pluie. Malgré certaines améliorations dans la 

détection des pluies durant la saison cyclonique, les modèles échouent à reproduire avec précision les 

événements de pluie observés au sol.  

En somme, l’'analyse des 9 modèles ne présente pas de meilleures performances à capturer les 

précipitations par rapport aux données observées au sol, sur la période étudiée. Ces données de modèles 

ne peuvent être utilisées pour projeter le climat qu'après correction des biais qu'elles comportent. 

Cependant, en raison du faible volume de données observées utilisées, ces résultats présentent des limites 

et des incertitudes. Ce qui souligne la nécessité d’évaluer d’autres modèles qui prend en compte des 

processus climatiques régionaux sur une plus longue période, en utilisant davantage de modèles 

climatiques globaux (MCGs) et de données observées au sol. 

En perspective, il serait intéressant de corriger les biais et de quantifier les incertitudes des MCGs CMIP6. 

De plus, serait évident de faire des projections afin d’anticiper les effets des changements climatiques sur 

les précipitations futures et pour soutenir la gestion des ressources en eau et la planification de 

l'adaptation aux conditions climatiques extrêmes. 
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